
  

  

Abstract— Neurophysiological data are widely affected by 

different forms of signal artifacts. In electroencephalographic 

recordings from the scalp, eye blinks are a main contribution as 

a source of signal alteration. Different approaches have been 

used to improve on this problem, from the rejection of part of 

the signal, to corrections through linear decomposition 

methods. A widely used technique is independent component 

analysis (ICA). Different studies have shown the suitability of 

ICA to correct a variety of artifact sources, but to our 

knowledge, there is no evidence of the effect of ICA in the phase 

of a signal, over time. This is of importance because the phase is 

a critical component of the physiological signals that has been 

implicated in several neural mechanisms. The aim of this work 

is to assess the level of phase distortion that ICA can potentially 

introduce to real and simulated data. 

I. INTRODUCTION 

Since the first reports on electroencephalography (EEG) 
recordings from Berger [1], the eye movements, such as 
saccades and eyelid closure, have been recognized as a 
source of scalp signal [2]. Two signal contributions arising 
from saccade execution have been identified: i) corneo-
retinal dipole movement, which looks like a slow wave on 
EEG data; ii) and the saccadic spike-potential produced by 
contractions of extra-ocular muscles [3]. The artifacts 
introduced by ocular activity on EEG are typically over 
75µV, while, artifact free periods of EEG have amplitudes 
around 30µV. These amplitude differences translate to the 
recorded data in a large reduction in the signal-to-noise ratio 
during the periods of ocular activity. On the other hand, it has 
been reported that saccadic spike potential are able to 
introduce broadband oscillations in EEG signals, mainly in 
the gamma frequency range [3], [4]. Gamma activity has 
been mainly associated with attention and perception. This 
evidence has raised concerns about the real origin of task 
related gamma band activity. Thus, EEG analysis on 
cognitive tasks has to deal with these two electrical sources 
involved in the execution of ocular movements. 

During an experimental recording, the occurrence of 
blinks and saccades cannot be predicted; subjects can try to 
avoid them but they will never be able to completely control 
them. In EEG analysis, there are two approaches to deal with 
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these data; to reject the experimental trials with artifacts or to 
correct the effects of these artifacts over the recorded signal 
[2]. One of the most common techniques used for artifact 
correction is independent component analysis (ICA). ICA is a 
blind source decomposition algorithm, and it allows the 
statistical separation of independent sources in multi-channel 
recordings. It has been used to effectively remove ocular and 
other artifacts from EEG data [5], [6]. However, to our 
knowledge there is no empirical evidence about how this 
decomposition algorithm could be affecting the phase of the 
signal. In neurophysiologic data, the phase of the oscillatory 
signals has been proposed as a critical element in different 
mechanisms of neural coordination. Thus, the alteration of it 
during signal processing is becoming a critical issue in this 
field. 

In the present work, we assessed the effect of ocular 
artifact removal through ICA decomposition on EEG signal. 
Considering that real EEG signal is nonlinear and non-
stationary, which adds difficulties to straight evaluation of 
phase, we also tested ICA effects over simulated EEG signal 
(sim-EEG). For real and sim-EEG signals, we compared the 
phase (extracted using Hilbert transform), of the raw signal 
with the ICA corrected dataset after artifact correction. 
Additionally, we assessed whether the phase distortion 
introduced by ICA correction were linear over time and 
frequency. 

II. SIMULATED EEG DATA  

A. Simulation of Cortical Sources 

For simplicity, to simulate EEG data, five different 
sources were created and then projected through the scalp by 
propagation factors proportional to scalp distance between 
simulated source and recording electrode [7]. Four of these 
sources were of neural origin and modeled as sinusoids 
signals of unitary amplitude. Each of them was related to one 
scalp area, considering possible points only discrete positions 
coincident with 10/20 system recording layout [8]. A frontal 
source was located at Fp1 electrode level but in the scalp 
midline, with a frequency on ! band (6 Hz) and a phase of 
"/3. A central source was located under Cz electrode, which 
had a frequency in the low range of # band (12 Hz) and a 
phase of "/5. A parietal source was located under Pz, which 
had a frequency in the high # range (25Hz) and a phase of 
"/7. Finally, the occipital simulated source was located under 
Oz electrode, with a frequency in $ band (10 Hz) and a phase 
of 2"/3. 

B. Mimicking Ocular Activity 

To simulate ocular activity, we created a fifth source 
located at nasion (between eyes) level. This source was 
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intended to recreate the blink artifact on the EEG, which is a 
monophasic deflection lasting for 200-400 ms in the signal 
[2]. The time series used here was composed by an 
asymmetrical triangular wave with a gamma probability to 
occur based on inter blink interval (IBI), with decreasing 
probability for longer IBI. The triangular wave had maximum 
amplitude of 3, chosen to mimic the signal-to-noise ratio 
from real EEG data during eye movements. Based on real 
electro ocular traces, the rising part of the wave lasted 89 ms, 
increasing from null amplitude to 3. In addition, its falling 
part lasted 178 ms, decreasing from amplitude 3 to null again.  

It has been shown that the probability of a blink can be 
modeled by (1). With c being constant, and $ = -1.24 when 
IBI > 1.025 seconds [9]. For the five sources simulated here 
(one ocular and four neuronal), we created 6 minutes of data 
at a sampling rate of 2048 Hz. 

  (1) 

C. Sources Projection to Recording Sites 

To generate this sim-EEG activity, we considered five 
recording sites. According to the 10/20 system, the recording 
sites were vertical electro-oculogram (VO), Fz, Cz, Pz, and 
Oz. At each of these recording sites, the signal was generated 
as the linear sum of the five cortical sources projected to that 
specific point of the scalp (2). To project the source signal 
through the scalp to the location of the recording electrode, a 
propagation coefficient was estimated based on the distance 
over the scalp surface between the source and the recording 
electrode. Table I shows the propagation coefficients used for 
each source to each electrode. No propagation delay was 
considered, as its only effect would be to shift the entire 
signal in time without any other specific consequence [10]. 

  (2) 

TABLE I.  PROPAGATION COEFFICIENT 

Propagation coefficient of each source. Record-

ing Sites COcular CFrontal CCentral CParietal COccipital 

VO 1 0.9 0.5 0.3 0.1 

Fz 0.7 0.8 0.8 0.6 0.4 

Cz 0.5 0.6 1 0.8 0.6 

Pz 0.3 0.4 0.8 1 0.8 

Oz 0.1 0.2 0.6 0.8 1 

 

III. REAL EEG DATA 

The real EEG data analyzed was recorded from one right-
handed subject while he attended a bi-stable presentation of 
the Necker cube, the experiment lasted 6 minutes and total 
recording was of 8.25 minutes. The EEG was obtained from 
32 channels according to the 10-20 system using an 
ActiveTwo Biosemi (Biosemi B.V., Amsterdam, 
Netherlands). As for simulated data sampling frequency was 
of 2048 Hz and we only further analyze five of these 32 
electrodes recording sites (VO, Fz, Cz, Pz and Oz). The 

amount of collected data surpass largely the criterions used 
for a good quality of ICA decomposition, in which the 
number of time points required for training may be as few as 
several times the number of variables (the square of the 
number of channels)[10],[11]. 

IV. RAW AND ICA CORRECTED PHASE COMPARISON 

A. Independent Component Analysis (ICA) 

ICA [12] is an algorithm to separate signals into their 
independent components. To do this, it computes a matrix of 
weights that is then used to combine underlying unknown 
sources to generate the observable data [13]. ICA operates 
under three assumptions: 

1) The multichannel data is a spatially stable combination 
of temporarily independent non-gaussian signals, which in 
our case, comes from the neural and non-neural sources.  

2) The combination of different sources is linear at the 
electrode level and the propagation is considered 
instantaneous.  

3) The number of estimated sources cannot be more than 
the number of sensors used. [14].  

In this work, we used the Infomax ICA algorithm [15] as 
implemented in the EEGLAB toolbox [16] for MATLAB 
(The Mathworks Inc.). After performing ICA, we explore the 
traces and the topographical distribution of the components. 
The alignment of the vertical electro-oculogram signal from 
the original data with the component traces reveals the 
artifactual nature of some components that show blink-like 
events time aligned with the blinks. This was corroborated by 
examining the frontal distribution of these components in the 
topographic representation [10]. Then, we used the weight 
matrix to combine the components at the electrode level. We 
generated one reconstructed data rejecting the artifacts 
components and another dataset without any rejection of 
components, allowing us to explore any disruption that the 
ICA process itself is introducing to the signal. 
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Figure 1. Example of real electro-oculogram (EOG) and some of its ICA 
components. For each component it topographic distribution is showed. 

 

1375



  

B. Phase Extraction 

For raw and ICA-corrected real EEG signal, we extracted 
phase at 6, 10, 12, and 25 Hz. To do this, signal was filtered 
with a band pass filter (4Hz around interest frequency). 
Hilbert transform was then used to extract phase data in time. 
The same procedure was applied to sim-EEG and ICA 
corrected sim-EEG. 

C. Phase Comparison of Real EEG Data 

Qualitative inspection of unwrap phase from real EEG 
data, Fig. 2, shows in light blue that ICA removals introduce 
phase changes. Phase data was unwrap for Fig. 2 but not for 
analysis of Fig. 3. As seen in Fig. 2, the reconstructed data 
from independent components shows a big disruption in 
phase when the identified ocular ICA components have been 
removed before reconstruction. This was expected to occur 
due to the contribution of these components to the averaged 
signal of the EEG at electrode level, especially in the low 
frequencies range, where the blink artifacts have an important 
contribution. This evidence shows that ICA removal has 
affected phase differentially across frequencies. 

 

 

Figure 2. Unwrap phase in radians against time for real EEG data, 
electrodes Fz, Cz, Pz and Oz, each electrode was band pass filtered. In 
black, phase of original EEG. In red, phase for EEG signal reconstructed 
from all ICA components. In light blue, phase after ICA correction. 

 

Figure 3. Mean phase difference between raw EEG data and ICA corrected, 
at the beginning (0-120 s), middle (120-240 s) and end part (240-360 s) of 
the record. Mean difference and confidence interval, phase from raw EEG 
data was subtracted from phase of its ICA corrected signal. *: p<5%  paired 
t-test. The number of blinks in each part was 42, 34 and 31, respectively. 

 

Due to the distribution of the IBI and different demands 
related to the experimental task, which can modulate 
different frequency bands across time, we explored how the 
phase is affected by local temporal dynamics of the EEG 
activity. The Fig. 3 shows the mean of phase difference 
between the original signal and the reconstructed signal after 
the rejection of ocular ICA components. The phase difference 
was measure as point-by-point subtraction from the extracted 
phase (without unwrapping). At different frequencies, the 
phase is differentially affected. As we mentioned before, this 
is probably due to the spectral nature of the artifacts and task-
contingent changes in neural dynamics. 

D. Phase Comparison of Simulated-EEG Data 

To assess if the non-stationary nature of neural dynamics 
was responsible for the differential effects of ICA removal on 
phase signal, we reproduced the phase analysis for the 
simulated data. As stated before, we generated stationary 
signals and we introduced only one non-stationary 
component, the simulated eye blink. In this case, as we 
expected, ICA was able to isolate the blink component, 
leading to negligible effect of the blink-like component 
removal in the phase of the reconstructed signal for all the 
electrodes, Fig. 4. By subtracting the phase of the ICA-
corrected signal from the original signal, phase disturbances 
at different recording time are revealed, Fig. 5. Even though 
phase shifts introduced by ICA removal are smaller than in 
real EEG data, the simple fact of removing these ICA 
components affected differentially the phase signal in time 
and across frequency. Again, bigger phase shifts where found 
for lower frequencies. 

 

 

Figure 4. Unwrap phase in radians against time for the simulated EEG data. 
In black the phase of sim-EEG. Behind that, in red is the phase for EEG 
signal reconstructed from all ICA components. In the top of all, in green, 
the phase for the same electrode after ICA correction. 

 

While the temporally local neural dynamics can be 
playing an important role accentuating the phase disturbance, 
at least the ICA-correction of eye blink itself is introducing 
phase disturbances in different degrees according to blink 
dynamic. This is critical when phase becomes a focus in 
neurophysiological data analysis or interpretation. 
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Artifact correction by ICA removal affects differentially 
the EEG signal in time and frequency, this is probably due to: 
1) the unpredictable blink dynamics, 2) changes on neural 
dynamics along data acquisition. Ideally, if we were able to 
absolutely isolate the eye component by ICA decomposition, 
it would be possible to have clear neural signal and therefore 
its true phase. But, if after ICA correction, the signals still 
contain ocular components (as in most real data), or a small 
dataset is used, or the recording was too noisy, all these 
processes will directly affect the signal phase. Consequently 
it can be expected an enhancement of differential effects 
introduced by ICA artifact correction, in time and frequency. 

 

Figure 5. Mean phase difference between sim-EEG data and the ICA 
correction of sim-EEG, at the beginning (0-120 s), middle (120-240 s) and 
end part (240-360 s) of the signal. Mean difference and confidence interval, 
phase from sim-EEG data was subtracted from phase of its ICA corrected 
signal. *: p<5%  paired t-test. The number of blinks in each part was 44, 53 
and 36, respectively. 

V. CONCLUSIONS 

EEG phase has been implicated in several neural 
mechanisms as being responsible for neuronal patterns of 
coherence or synchrony between different brain areas. To 
assess phase coherence between areas, it has been assumed 
that phase itself is consistent or stable over time. With the 
only phase shift or resetting due to the cognitive task that we 
are assessing through phase coherence measures, as Phase-
Locking Value [17] or Pairwise Phase Consistency [18]. All 
these phase coherence indices rely on the assumption that 
repetition of the same task should evoke the same neuronal 
state each time. But, in this work we showed that ICA artifact 
correction would introduce non-linear and non-stationary 
phase changes over time and across frequencies, setting 
spurious phase coherence indexes. Here we used the Infomax 
ICA algorithm, without any attempt to compare different ICA 
algorithms, but results should be the same for other 
algorithms as source decomposition has shown to be 
equivalent [19]. Depending on the kind of analysis performed 
the phase shifts can be more or less important (ex. 
Differences 0.4 rad at 6 Hz correspond to ~12 ms). For ERP 
calculation this can result in a noisy average requiring larger 
number of trials. The effect could be potentially more 
important if we consider longer sessions as subject awareness 
decrease. ICA has also been applied in LFP that can be 
studied in relation with the spike activity. In those analyses 
the phase timing could be critical, especially when jumps in 
phase due to brain states changes are generated. As has been 
already proposed in literature [20], further experimental 
constraints should be met to appropriately isolate the ocular 
artifacts on ICA decomposition. 
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